jueves, 22 de octubre de 2009

SIMULACION DE UNA RED HIBRIDA


OJETIVO:revisar una red utilizando el rauter switch un acces point. con la finalidad interconectar y configurar dichs red provandola atraves de envio de datos verificado a travez de la verificacion que la red funcione de manera optima.


DESARROLLO:
En redes Híbridas

Una red Hibrida es la combinación entre una red Alámbrica y una red Inalámbrica. En SICI podemos implementar este tipo de redes a medida para facilitar, tanto la estabilidad como la versatilidad de tu red.




Con este tipo de redes vencemos todas las desventajas, tanto de una red inalámbrica como de una red alámbrica, optimizando los recursos al 100%.

No olvides leer las secciones de Red Inalámbrica y Red Alámbrica para que conozcas los beneficios, ventajas y desventajas de cada una, y te darás cuenta que una Red Hibrida puede ser la respuesta optima a tus necesidades.

Además, puedes adaptar tus redes ya existentes, reduciendo los costos, destacando también como punto principal que SICI ofrece los mejores precios en la instalación de cualquiera de estos tipos de redes. Ponte en contacto con nosotros para hacerte una cotización específica a tus necesidades sin ningún costo.



Una dirección IP es un número que identifica de manera lógica y jerárquica a una interfaz de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red o nivel 3 del modelo de referencia OSI. Dicho número no se ha de confundir con la dirección MAC que es un número hexadecimal fijo que es asignado a la tarjeta o dispositivo de red por el fabricante, mientras que la dirección IP se puede cambiar.


Es habitual que un usuario que se conecta desde su hogar a Internet utilice una dirección IP. Esta dirección puede cambiar al reconectar; y a esta forma de asignación de dirección IP se denomina una dirección IP dinámica (normalmente se abrevia como IP dinámica).

Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija (se aplica la misma reducción por IP fija o IP estática), es decir, no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos, y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.




ESTAS SON LAS PARTE QUE ITILIZAMOS PARA REALIZA NUESTRA RED HIBRIDA Y LA CUAL SUS COMPOTENTE FORMANPARTE DE ESTA.


en esta imagen se muestra como estas conectadas todos los dispositivos que el profesor pidio



esta pantalla que aparece es para configurar las direcciones ip o indicarles cual van ocupar o igualmente pueden modificar los componente de los dispositvos


semuestra despues de que configurada y se manda un mensaje de verificacionpara ver que los datos esten bien ingresados y que la informacion llege a su destinatario, pero tanbien tiene que ver una rspesta de quien evio el mensaje


se mustra des pues de que llege elmensaje y se ve como esta funcionado





concluciones: esta red que aplendimos a realizar fue algo complicado pro que no teniamos mucha experiencia con el prgrma pero a un asi acompretamos los paso que el profesor solicito, claro la configuacion e smuy laboriosa , pero a pesar de todos los problemas que es configurar, si aplendi mejor como dar una direccion IP y como construir uan red desde un simulador .

lunes, 19 de octubre de 2009

Mantenimiento preventivo


OBJETIVO:Cconocer la importacia del mantenimiento prentivo y la implementacion de nuevas tecnologias en un centro de computo con la finalidad de una mayor efiencia de sus procesos.


DESARROLLO: Mantenimiento Preventivo
acción eficaz para mejorar aspectos operativos relevantes de un establecimiento tales como funcionalidad, seguridad, productividad, confort, imagen corporativa, salubridad e higiene. Otorga la posibilidad de racionalizar costos de operación. El mantenimiento debe ser tanto periódico como permanente, preventivo y correctivo.



- Inventario técnico, con manuales, planos, características de cada equipo.

- Procedimientos técnicos, listados de trabajos a efectuar periódicamente,

- Control de frecuencias, indicación exacta de la fecha a efectuar el trabajo.

- Registro de reparaciones, repuestos y costos que ayuden a planificar.
caracteristicas



CONCLUCION:las concluciones definidas en esta clase se caracterisan principalmente por lo que deseamos lograr que es mantener nuestro equipo de computo en un buen estado , logrando haci prebenir fallas en el equipo , claro levando a cabo cada procedimiento , reglas , normas , estandares ,etc.
esta clase desea que una aplenda mas sobre que es el mantenimiento y sus caracteristicas principales eso alo que se enfoca este tema.

EQUIPO:Oscar y Monica

jueves, 15 de octubre de 2009

dispositivos y medios de comunicacion que utiliza packet tracer

Panel de Dispositivos

El panel de dispositivos muestra todos los dispositivos y medios que podemos utilizar para el armado de nuestra topología en Packet Tracer



1) Routers: Muestra en el panel 9) los modelos de routers disponibles.
2) Switchs: Muestra en el panel 9) los modelos de switchs disponibles.
3) Hubs: Muestra en el panel 9) los modelos de hubs disponibles.
4) Dispositivos Wireless: Muestra en el panel 9) los modelos de dispositivos Wireless disponibles.
5) Medios: Muestra en el panel 9) los medios (serial, fibra, consola, etc) disponibles.
6) Dispositivos Finales: Muestra en el panel 9) los dispositivos finales (impresora, host, server, etc.) disponibles.
7) Emulación WAN: Muestra en el panel 9) las diferentes emulaciones WAN (DSL, módem, cable, etc.) disponibles.
8) Dispositivos Personalizados: Muestra en el panel 9) los diferentes dispositivos personalizados disponibles.
9) Panel de Dispositivos Seleccionados: Muestra los dispositivos disponibles según nuestra selección para utilizar en la topología. Se hace click en el dispositivo que deseamos utilizar y luego click en la parte del escenario que queremos ubicar nuestro dispositivo

Colocar Dispositivos en el Escenario

En el panel de dispositivos deberemos seleccionar los dispositivos que queremos poner en el escenario. Para eso deberemos hacer click en el dispositivo que seleccionamos (les va a aparecer un símbolo de prohibido en el icono del dispositivo seleccionado y el cursor en cruz) y luego hacen click en la parte del escenario donde queremos ubicarlo, así hasta poner todos los dispositivos que necesitemos.

Reglas de Interconexión de Dispositivos

Para realizar una interconexión correcta debemos tener en cuenta las siguientes reglas:



Cable Recto: Siempre que conectemos dispositivos que funcionen en diferente capa del modelo OSI se debe utilizar cable recto (de PC a Switch o Hub, de Router a Switch).

Cable Cruzado: Siempre que conectemos dispositivos que funcionen en la misma capa del modelo OSI se debe utilizar cable cruzado (de PC a PC, de Switch/Hub a Switch/Hub, de Router a Router).

Colocar Dispositivos en el Escenario

En el panel de dispositivos deberemos seleccionar los dispositivos que queremos poner en el escenario. Para eso deberemos hacer click en el dispositivo que seleccionamos (les va a aparecer un símbolo de prohibido en el icono del dispositivo seleccionado y el cursor en cruz) y luego hacen click en la parte del escenario donde queremos ubicarlo, así hasta poner todos los dispositivos que necesitemos.



Para el armado de esta topología utilicé routers y switchs genéricos porque tienen una gran variedad de interfaces ya definidas que en los otros modelos las tenemos que cambiar nosotros según los medios que vayamos a utilizar. Cómo cambiar las interfaces físicas y todo lo que tiene que ver con configuración de dispositivos lo voy a explicar con profundidad en un tutorial aparte

En este tutorial de armado de topologías de red para Packet Tracer voy a intentar explicarles de forma gráfica y sencilla los pasos que tienen que seguir para no tener inconvenientes. La topología que voy a armar va a contener los dispositivos y medios más comunes y va a quedar como se ven en el gráfico.




CONCLUCIONES: este tema es muy interesante por que la verdad me gusta lo que vamos a aprender se ve interesante, ademas de que mobos aprender como se van a configurar una red vamos a identificar sus compònentes y caracteriosticas de cada una de ellas.en pocas palabras este programa es apto para poder trabar en redes

jueves, 8 de octubre de 2009

protocolos de redes LAN

objetivo:conocer los protocolos que se utilizan el la redes LAN con la finalidad de identificar las caracteristicas de estos.



QUÉ SON LAS REDES LAN?

ES UN SISTEMA DE COMUNICACIONES DE ALTA VELOCIDAD QUE CONECTA MICROCOMPUTADORAS O PC QUE SE ENCUENTRAN CERCANAS, POR LO GENERAL ADENTRO DE UN MISMO EDIFICIO, UNA LAN CONSTA DE HARDWARE Y SOFTWARE DE RED Y SIRVEN PARA CONECTAR LAS PC QUE ESTÁN AISLADAS; DA LA POSIBILIDAD DE COMPARTIR ENTRE ELLAS PROGRAMAS, INFORMACIÓN Y RECURSOS, COMUNIDADES DE DISCO, DIRECTORIOS E IMPRESORAS.
LAN es la abreviatura de Local Area Network (Red de Área Local o simplemente Red Local). Una red local es la interconexión de varios ordenadores y periféricos. Su extensión esta limitada físicamente a un edificio o a un entorno de unos pocos kilómetros. Su aplicación más extendida es la interconexión de ordenadores personales y estaciones de trabajo en oficinas, fábricas, etc; para compartir recursos e intercambiar datos y aplicaciones. En definitiva, permite que dos o más máquinas se comuniquen.

El término red local incluye tanto el hardware como el software necesario para la interconexión de los distintos dispositivos y el tratamiento de la información.

Características:
* Tecnología broadcast (difusión) con el medio de transmisión compartido.
* Cableado específico instalado normalmente a propósito.
* Capacidad de transmisión comprendida entre 1 Mbps y 1 Gbps.
* Extensión máxima no superior a 3 km (Una FDDI puede llegar a 200 km)
* Uso de un medio de comunicación privado.
* La simplicidad del medio de transmisión que utiliza (cable coaxial, cables telefónicos y fibra óptica).
* La facilidad con que se pueden efectuar cambios en el hardware y el software.
* Gran variedad y número de dispositivos conectados.
* Posibilidad de conexión con otras redes.
QUÉ SON LAS REDES LAN?
ES UN SISTEMA DE COMUNICACIONES DE ALTA VELOCIDAD QUE CONECTA MICROCOMPUTADORAS O PC QUE SE ENCUENTRAN CERCANAS, POR LO GENERAL ADENTRO DE UN MISMO EDIFICIO, UNA LAN CONSTA DE HARDWARE Y SOFTWARE DE RED Y SIRVEN PARA CONECTAR LAS PC QUE ESTÁN AISLADAS; DA LA POSIBILIDAD DE COMPARTIR ENTRE ELLAS PROGRAMAS, INFORMACIÓN Y RECURSOS, COMUNIDADES DE DISCO, DIRECTORIOS E IMPRESORAS

CARACTERISTICAS
Las redes de área local ( LAN ) son significativamente diferentes de las redes de cobertura amplia. El sector de las LAN es uno de los de más rápido crecimiento en la industria de las comunicaciones. Las redes de área local poseen las siguientes las características.
Generalmente, los canales son propiedad del usuario o empresa.
Los enlaces son líneas ( desde 1 Mbit / s hasta 400 Mbit / s )

Por el contrario el propietario de una LAN no tiene que preocuparse de utilizar al máximo los canales, ya que son baratos en comparación con su capacidad de transmisión ( los cuellos de botella en las LAN suelen estar en el SOFTWARE ). Por tanto, no es tan crítica la necesidad de esquemas muy eficientes de multiplexado y multidistribución. Además, como las redes de área local que residen en un mismo edificio, la topología tiende a ser más ordenada y estructurada, con configuraciones en forma de bus, anillo o estrella.
Como los otros han dicho antes, LAN es red de area local (traducido al español), es una red pequeña, aproximadamente de unos 75kms(aunque realmente son mas pequeñas) a diferencia de las WAN y las MAN que son inmensas redes y que por lo general son las uniones de varias redes LAN( las que valga la redondancia forman la internet). Estas redes son todas las que conocemos, las hay en cyber cafes, empresas, escuelas, etc. Son las mas comunes.
Esta seria una forma de clasificar a las redes por su distribucion geografica, o mejor a un por el tamaño que poseen.
Recordemos que para considerar una red como red debes de poseer los siguientes elementos.

1)Nodos: Que son capaces de procesar datos y solicitar servicios en la red como las computadoras y los switches (de capa 3).

2)Un sistema operativo: que puede ser de tipo cliente o servidor.

3)adaptador de red: o llamada NIC(Network Interface Card), que no es mas que nuestra tarjeta de red la cual posee la direccion MAC (Media Access Control) y que gestiona todas las tramas del protocolo de comunicacion. Ademas que nos conecta al medio de transmision.


4)un protocolo de red: este puede ser TCP/IP, IPX/SPX, Apple Talk, Netbeui, Netbios, etc.

5)Medio de transmision: No es mas que el cable donde pasan los datos. Este puede ser UTP cat5, STP cat5, Coaxial, Fibra optica, Linea telefonica conmutada para la recepcion de los paquetes iberpaq o mejor conocido como UTP cat3.

otras caracteristicas serian las transmisiones de los datos como las ya desfasadas 10/100Mb/s(que tambien entran en las caracteristicas de las tarjetas de red) y las modernas GiGaLan, que alcanzan 1000 Mb/s.
• Concentradores de cableado: una LAN en bus usa solamente tarjetas de red en las estaciones y cableado coaxial para interconectarlas, además de los conectores, sin embargo este método complica el mantenimiento de la red ya que si falla alguna conexión toda la red deja de funcionar. Para impedir estos problemas las redes de área local usan concentradores de cableado para realizar las conexiones de las estaciones, en vez de distribuir las conexiones el concentrador las centraliza en un único dispositivo manteniendo indicadores luminosos de su estado e impidiendo que una de ellas pueda hacer fallar toda la red.
Existen dos tipos de concentradores de cableado:
1. Concentradores pasivos: actúan como un simple concentrador cuya función principal consiste en interconectar toda la red.
2. Concentradores activos: además de su función básica de concentrador también amplifican y regeneran las señales recibidas antes de ser enviadas.
Tipos De Redes
Se clasifican según su Extensión y Topología.
Según su Extensión tenemos redes LAN, MAN y WAN.
LAN (Redes de Área Local):
Son redes de propiedad privada dentro de un solo edificio de hasta unos cuantos kilómetros de extensión.
LAN es un sistema de comunicación entre computadoras, con la característica de que la distancia entre las computadoras debe ser pequeña.
Se usan ampliamente para conectar computadoras personales y estaciones de trabajo en oficinas de compañías y fábricas con objeto de compartir los recursos (impresoras, etc.) e intercambiar información.
Las LAN se distinguen de otro tipo de redes por las siguientes tres características: tamaño, tecnología de transmisión y topología.
Las LAN están restringidas en tamaño, las computadoras se distribuyen dentro de la LAN para obtener mayor velocidad en las comunicaciones dentro de un edificio o un conjunto de edificios, lo cual significa que el tiempo de transmisión del peor caso está limitado y se conoce de antemano.
Conocer este límite hace posible usar ciertos tipos de diseños que de otra manera no serían prácticos y también simplifica la administración de la red.
Las LAN a menudo usan una tecnología de transmisión que consiste en un cable sencillo al cual están conectadas todas las máquinas.
Las LAN tradicionales operan a velocidades de 10 a 12 GBPS, tienen bajo retardo (décimas de microsegundos) y experimentan muy pocos errores.
Las LAN pueden tener diversas topologías. La topología o la forma de conexión de la red, depende de algunos aspectos como la distancia entre las computadoras y el medio de comunicación entre ellas ya que este determina la velocidad del sistema.
Básicamente existen tres topologías de red: estrella (Star), canal (Bus) y anillo (Ring)
3.- ¿MENCIONA QUE ES UNA RED WAN?
ES UNA RED DE COBERTURA AMPLIA QUE SIRVE PARA INTERCONECTAR VARIAS REDES MAN, ASÍ COMO LAS REDES MAN PARA INTERCONECTARLAS, SUELEN NECESITAR DE HARDWARE ESPECIAL, LAS REDES WAN TAMBIÉN LLEGAN A INCLUIR ENLACES SATELITALES, FIBRAS ÓPTICAS, APARATOS DE RAYOS INFRARROJOS Y LÁSER. LA RED DE COMPUTADORAS QUE COMPRENDE A INTERNET ESTA CONECTADA PARA FORMAR UNA WAN.

WAN (Redes de Área Amplia):
Una WAN se extiende sobre un área geográfica amplia, a veces un país o un continente; contiene una colección de máquinas dedicadas a ejecutar programas de usuario (aplicaciones), estas máquinas se llaman Hosts.

Los Hosts están conectados por una subred de comunicación. El trabajo de una subred es conducir mensajes de un Host a otro.
La separación entre los aspectos exclusivamente de comunicación de la red (la subred) y los aspectos de aplicación (Hosts), simplifica enormemente el diseño total de la red.
En muchas redes de área amplia, la subred tiene dos componentes distintos: las líneas de transmisión y los elementos de conmutación.
Las líneas de transmisión (también llamadas circuitos o canales) mueven los bits de una máquina a otra.
Los elementos de conmutación son computadoras especializadas que conectan dos o más líneas de transmisión.
Cuando los datos llegan por una línea de entrada, el elemento de conmutación debe escoger una línea de salida para enviarlos.
Como término genérico para las computadoras de conmutación, les llamaremos enrutadores.
La velocidad normal lleva un rango de los 56 KBPS a los 155 MBPS.
Los retardos para una WAN pueden variar de unos cuantos milisegundos a unas decenas de segundos.
2.- ¿QUÉ ES UNA RED MAN?
ES UNA RED DE ÁREA METROPOLITANA QUE SIRVE PARA INTERCONECTAR LAS REDES LAN , NO ESTÁN GEOGRÁFICAMENTE LIMITADAS EN TAMAÑO Y PARA INTERCONECTAR SUELEN NECESITAR DE HARDWARE ESPECIAL ASÍ COMO DE LÍNEAS TELEFÓNICAS, MÓDEMS.

MAN (Redes de Área Metropolitana):
Una MAN es básicamente una versión más grande de una LAN y normalmente se basa en una tecnología similar.
Podría abarcar una serie de oficinas cercanas o en una ciudad, puede ser pública o privada.
Una MAN puede manejar datos y voz, e incluso podría estar relacionada con una red de televisión por cable local.
Una MAN sólo tiene uno o dos cables y no contiene elementos de conmutación, los cuales desvían los paquetes por una de varias líneas de salida potenciales.
Como no tiene que conmutar, el diseño se simplifica.
La principal razón para distinguir las MAN como una categoría especial es que se ha adoptado un estándar para ellas, y este se llama DQDB (bus dual de cola distribuida).
El DQDB consiste en dos buses (cables) unidireccionales, a los cuales están conectadas todas las computadoras.
Cada bus tiene una cabeza terminal (head-end), un dispositivo que inicia la actividad de transmisión.
El tráfico destinado a una computadora situada a la derecha del emisor usa el bus superior, el tráfico hacia la izquierda usa el bus inferior.
Un aspecto clave de las MAN es que hay un medio de difusión al cuál se conectan todas las computadoras.
Esto simplifica mucho el diseño comparado con otros tipos de redes.

Estándar Ethernet
Ethernet es una tecnología desarrollada para las redes LAN que permite transmitir información entre computadoras a velocidades de 10 y 100 millones de bits por segundo.
Ethernet es un estándar, por lo tanto se trata de un sistema independiente de las empresas fabricantes de hardware de red.
Si bien Ethernet es el sistema más popular, existen otras tecnologías como Token Ring, 100 VG.
Se usa en redes que no superan las 30 máquinas, de exceder este número conviene usar Token Ring.
Un sistema Ethernet consiste de tres elementos básicos:
• Un medio físico utilizado para transportar señales entre dos computadoras (adaptadores de red y cableado).
• Un juego de reglas o normas de acceso al medio (al cable, por ejemplo) que le permita a las computadoras poder arbitrar o regular el acceso al

sistema Ethernet (recordar que el medio está compartido por todas las computadoras integrantes de la red).
• Un estándar o patrón llamado trama o frame que consiste en un juego determinado de bits, usados para transportar datos a través del sistema.
Cada computadora equipada con Ethernet opera en forma independiente de las otras estaciones de la red, es decir que no hay una controladora central.
Todas las estaciones conectadas vía Ethernet se conectan a un sistema compartido de señales, llamado medio.
Las señales Ethernet se transmiten en serie, un bit por vez, a través del canal Ethernet (llamado de señal compartida) a cada una de las estaciones integrantes de la red Ethernet.
El preámbulo de un paquete Ethernet se genera mediante el hardware (la placa de red).
El software es responsable de establecer la dirección de origen y de destino y de los datos.
La información sobre la secuencia de los paquetes en general es tarea del hardware.
Un paquete Ethernet está compuesto esencialmente por las siguientes partes:
• El preámbulo: es una serie de unos y ceros, que serán utilizados por la computadora destino (receptor) para conseguir la sincronización de la transmisión.
• Separador de la trama: son dos bits consecutivos utilizados para lograr alineación de los bytes de datos. Son dos bits que no pertenecen a los datos, simplemente están a modo de separador entre el preámbulo y el resto del paquete.
• Dirección de destino: es la dirección de la computadora a la que se le envía el paquete. La dirección de difusión o broadcast (se le envía a todos los equipos) está compuesta por uno solamente (son todos unos).
• Dirección de origen: es la dirección de la computadora que envía los datos.
• Longitud o tipo de datos: es el número de bytes de datos o el tipo de los mismos. Los códigos de tipos de datos son mayores que 1500, ya que 1500 bytes es la máxima longitud de los datos en Ethernet. Entonces, si este campo es menor que 1500 se estará refiriendo a la longitud de los datos y si es mayor, se referirá al tipo de datos. El tipo de datos tendrá un código distinto, por ejemplo para Ethernet que para Fast Ethernet.
• Datos: su longitud mínima es de 46 bytes y su largo máximo de 1500 bytes como dijimos en el ítem anterior.
• Secuencia de chequeo de la trama: se trata de un chequeo de errores (CRC) que utiliza 32 bits. Este campo se genera generalmente por el hardware (placa de red).
Basándose en lo visto, sin contar preámbulo, separadores y CRC, la longitud de los paquetes Ethernet serán:
El más corto: 6 + 6 + 2 + 46 = 60 bytes.
El más largo: 6 + 6 + 2 + 1500 = 1514 bytes.
Topología de redes LAN
o La topología física se refiere a la disposición física de las máquinas, los
dispositivos de red y el cableado. Así, dentro de la topología física se
pueden diferenciar dos tipos de conexiones: punto a punto y
multipunto.
? En las conexiones punto a punto existen varias conexiones entre
parejas de estaciones adyacentes, sin estaciones intermedias.
? Las conexiones multipunto cuentan con un único canal de
transmisión, compartido por todas las estaciones de la red.
Cualquier dato o conjunto de datos que envíe una estación es
recibido por todas las demás estaciones.
o La topología lógica se refiere al trayecto seguido por las señales a
través de la topología física, es decir, la manera en que las estaciones
se comunican a través del medio físico. Las estaciones se pueden
comunicar entre sí directa o indirectamente, siguiendo un trayecto que
viene determinado por las condiciones de cada momento.
Tipos
La topología de una red local es la distribución física en la cual se encuentran
dispuestos los ordenadores que la componen. Hay que tener en cuenta un número
de factores para determinar qué topología es la más apropiada para una situación
dada. Existen varios tipos: en estrella, en bus, en anillo y topologías híbridas.
Topología de redes LAN

Topología en estrella
La topología en estrella es uno de los tipos más antiguos de topologías. Se
caracteriza porque en ella existe un nodo central al cual se conectan todos los
equipos, de modo similar al radio de una rueda.
En esta topología, cada estación tiene una conexión directa a un acoplador
(conmutador) central. Una manera de construir esta topología es con conmutadores
telefónicos que usan la técnica de conmutación de circuitos.
Otra forma de esta topología es una estación que tiene dos conexiones
directas al acoplador de la estrella (nodo central), una de entrada y otra de salida (la
cual lógicamente opera como un bus). Cuando una transmisión llega al nodo central,

Según su función, los acopladores se catalogan en:
? Acoplador pasivo: cualquier transmisión en una línea de entrada al acoplador
es físicamente trasladada a todas las líneas de salida.
? Acoplador este la retransmite por todas las líneas de salida.
activo: existe una lógica digital en el acoplador que lo hace actuar
como repetidor. Si llegan bits en cualquier línea de entrada, son automáticamente
regenerados y repetidos en todas las líneas de salida. Si llegan simultáneamente
varias señales de entrada, una señal de colisión es transmitida en todas las
líneas de salida.
Topología de redes LAN

Topología en bus
Al contrario que en la topología en estrella no existe un nodo central, sino que
todos los nodos que componen la red quedan unidos entre sí linealmente, uno a
continuación del otro. Es necesario incluir en ambos extremos del bus unos
dispositivos denominados terminadores, que evitan posibles rebotes de la señal.
Esta topología permite que todas las estaciones reciban la información que se
transmite, una estación transmite y todas las restantes escuchan. Consiste en un
cable con un terminador en cada extremo del que se cuelgan todos los elementos de
una red. Todos los nodos de la red están unidos a este cable: el cual recibe el
nombre de "Backbone Cable". Tanto Ethernet como Local Talk pueden utilizar esta
topología.
El bus es pasivo, no se produce regeneración de las señales en cada nodo.
Los nodos en una red de "bus" transmiten la información y esperan que ésta no vaya
a chocar con otra información transmitida por otro de los nodos. Si esto ocurre, cada
nodo espera una pequeña cantidad de tiempo al azar, después intenta retransmitir la
información.
Topología de redes LAN

Topología en anillo
En esta topología, las estaciones están unidas unas con otras formando un círculo
por medio de un cable común. El último nodo de la cadena se conecta al primero
cerrando el anillo. Las señales circulan en un solo sentido alrededor del círculo,
regenerándose en cada nodo. Con esta metodología, cada nodo examina la
información que es enviada a través del anillo. Si la información no está dirigida al
nodo que la examina, la pasa al siguiente en el anillo. La desventaja del anillo es que
si se rompe una conexión, se cae la red completa.
El cableado es el más complejo de todos, debido, en parte, al mayor coste del
cable, así como a la necesidad de emplear dispositivos MAU (Unidades de Acceso
Multiestación) para implementar físicamente el anillo.
Cuando existen fallos o averías, es posible derivar partes de la red mediante los
MAUs, aislando las partes defectuosas del resto de la red mientras se determina el
problema.
Así, un fallo en una parte del cableado no detiene la red en su totalidad.
Cuando se quieren añadir nuevas estaciones de trabajo se emplean también los
MAUs, de modo que el proceso no posee una complicación excesiva.
Topología de redes LAN

Topologías híbridas
Son las más frecuentes y se derivan de las tres anteriores, conocidas como
topologías puras. Las más frecuentes son la topología en árbol y la topología
estrella-anillo .
La topología en árbol es una variante de la topología en bus. Esta topología
comienza en un punto denominado cabezal o raíz (headend). Uno o más cables
pueden salir de este punto y cada uno de ellos puede tener ramificaciones en
cualquier otro punto. Una ramificación puede volver a ramificarse. En una topología
en árbol no se deben formar ciclos.
Una red como ésta representa una red completamente distribuida en la que
computadoras alimentan de información a otras computadoras, que a su vez
alimentan a otras. Las computadoras que se utilizan como dispositivos remotos
pueden tener recursos de procesamientos independientes y recurren a los recursos
en niveles superiores o inferiores conforme se requiera.
Topología de redes LAN

La topología en estrella-anillo combina las tecnologías de las topologías en
estrella y anillo. El cable que une cada estación con la siguiente pasa a través de un
nodo central que se encarga de desconectarla de la red si sufre una avería.
Ventajas e inconvenientes de cada tipología
Hay varios factores a considerar cuando se determina qué topología cubre las
necesidades de una organización. La tabla siguiente nos muestra algunos de estos
factores para dicha elección.
Ventajas e inconvenientes de la topología en estrella
Ventajas:
* El fallo de un nodo no causa problemas de funcionamiento al resto de la red.
* La detección y localización de averías es sencilla.
* Es posible conectar terminales no inteligentes, ya que el nodo central tiene
capacidad de proceso.
Inconvenientes:
* La avería del nodo central supone la inutilización de la red.
* Se necesitan longitudes grandes de cableado, ya que dos estaciones cercanas
entre sí, pero distantes del nodo central, requieren cada una un cable que las una a
éste.
* Poseen limitaciones en cuanto a expansión (incremento de nodos), dado que cada
canal requiere una línea y una interfaz al nodo principal.
* La carga de red es muy elevada en el nodo central, por lo cual éste no se puede
utilizar más que como servidor o controlador.
* No soporta cargas de tráfico elevadas por sobrecarga del nodo central.
Ventajas e inconvenientes de la topología en bus
Ventajas:
* Simplicidad en el cableado, ya que no se acumulan montones de cables en torno al
nodo
Topología de redes LAN

* Hay una gran facilidad de ampliación, y se pueden agregar fácilmente nuevas
estaciones o ampliar la red añadiendo una nueva línea conectada mediante un
repetidor.
* Existe una interconexión total entre los equipos que integran la LAN.
Inconvenientes:
* Un fallo en una parte del cableado detendría el sistema, total o parcialmente, en
función del lugar en que se produzca. Además, es muy difícil localizar las averías en
esta topología. Sin embargo, una vez localizado el fallo, al desconectar de la red la
parte averiada ya no interferirá en la instalación.
* Todos los nodos han de ser inteligentes, ya que han de manejar el medio de
comunicación compartido.
* Debido a que la información recorre el bus bidireccionalmente hasta encontrar su
destino, la posibilidad de que sea interceptada por usuarios no autorizados es
superior a la existente en una red de estrella.
Ventajas e inconvenientes de la topología en anillo
Ventajas:
* Es posible realizar el enlace mediante fibra óptica por sus características de
unidireccionalidad, con las ventajas de su alta velocidad y fiabilidad.
Inconvenientes:
* La caída de un nodo supone la paralización de la red.
* Es difícil localizar los fallos.
* La reconfiguración de la red es complicada, puesto que incluir un ordenador más
en la red implica variar el nodo anterior y posterior de varios nodos de la red.
Ventajas e inconvenientes de las topologías híbridas
Son las más frecuentes y se derivan de las tres anteriores, conocidas como
topologías puras. Una de las más frecuentes es la topología en árbol.
Topología de redes LAN

Topología de redes LAN
Topología en árbol
Ventajas:
* Tiene una gran facilidad de expansión, siendo la colocación de nuevos nodos o
ramas sencilla.
* La detección de problemas es relativamente sencilla, ya que se pueden
desconectar estaciones o ramas completas hasta localizar la avería.
Inconvenientes:
* Hay una dependencia de la línea principal, y los fallos en una rama provocan la
caída de todos nodos que cuelgan de la rama o subramas.
* Existen problemas de atenuación de la señal por las distancias, y pueden
necesitarse repetidores.

CONCLUCIONES:esta plactica se enfoca a poner atencion alas caracteristicas que componen una red lan y cuales son sus protocolos de comunicacion entre las maquinas que se ballan a instalas , asi como las funciones que conpeten alas redes lan . las redes lasn son algo prejas por que se utilizan muchos protolos de los cuales solo el administrador podra contar con todos ellos.pero se me iso interesante esta plactica por ya se lo que es un red lan.

miércoles, 7 de octubre de 2009

Concepto de Insumos

OBJETIVO: conocer las caracteristicas y conceptos de equipos de computo ,sistemas ,paqueteria y consumibles en un C.C.


DESARROLLO:

el tema sedesarrollara con los siguintes puntos a definir :
*equipo de computo
*sistemas
*paqueteria
*consumibles










CONCLUCIONES:este tema se trata de identificar las necesidades y conocer mas hacerca los diferentes tipos de insumos puede ver en el centro de computo, estbleciendo haci las caracteristicas de cada unode los elementos que se estipulanron anteriormente
dando una blebe cdescripcion de cada uno de los elemntos y sus caracteristicas








sábado, 3 de octubre de 2009

prototipo de un centro de computo

OBJETIVO: Realizar el prototipo de un centro de computo con base en la planeacion realizada en la practia #1 de tal manera que este se encuentre a una escala determinada y seleccionada por el equipo.
DESARROLLO: En esta practica tuvimos que mostrar al profesor un prototipo de lo que va a ser nuestro centro de computo ya mostrado pero a nivel teorico en la practica #1 en la cual mostraremos medidas a escalas, el tipo de cableado el anaquel con los dispositivos de comunicacion es lo que se va a mostrar enseguida:
En las siguientes fotografias mostraremos los pasos como se fue construyendo nuestra maqueta:



en esta imagen podemos mostrar como fuimos cortando con forme a las medidas que espesificaba los planos.




en esta estamos dividiendo los espacios en los cuales va ir acomodado cada uno de los cuartos.





esta fue la que ya despues de pintar comenzamos a pegar conforme a las medidas que estaban las divisiones.



en esta estamos mostrando mas a fondo como mi compañero jose coloco las paredes de los cuartos.



en estas fotos mostramos la finalizacion de el centro de computo pegando las paredes de las fachadas y las paredes que dividen los equipos de computo y los dispositivos de comunicacion.

Ahora mostraremos como es el esquema con medidas reales de nuestro centro de computo:





Con forme a la imagen que se muestra de como debe de quedar hisimos algunas modificaciones al esquema por que vimos que nos hacia falta algunos cuartos para la bodega, centro de copiado y centro de mantenimiento peventivo y si lo como lo ve en fotos anteriores tuvimos algunas modificaciones que le e explicado, la modificacion mas importante que hicimos fue la de sacar el rack a la zona del centro de computo para que fuera mas rapida su manipulacion pero no alteramos las medidas del local y a continuacion daremos la topologia, la imagen de la red, los protocolos mas usados y la diferencia que tuvimos de material a lo que fue utilizado en el centro de computo.




Estrella: Los datos en estas redes fluyen del emisor hasta el concentrador, este realiza todas las funciones de la red, además actúa como amplificador de los datos.
La red se une en un único punto, normalmente con un panel de control centralizado, como un concentrador de cableado. Los bloques de información son dirigidos a través del panel de control central hacia sus destinos. Este esquema tiene una ventaja al tener un panel de control que monitorea el tráfico y evita las colisiones y una conexión interrumpida no afecta al resto de la red.




La función de los protocolos
Los protocolos son reglas y procedimientos para la comunicación. El término «protocolo» se utiliza en distintos contextos. Por ejemplo, los diplomáticos de un país se ajustan a las reglas del protocolo creadas para ayudarles a interactuar de forma correcta con los diplomáticos de otros países. De la misma forma se aplican las reglas del protocolo al entorno informático. Cuando dos equipos están conectados en red, las reglas y procedimientos técnicos que dictan su comunicación e interacción se denominan protocolos.
Cuando piense en protocolos de red recuerde estos tres puntos:
Existen muchos protocolos. A pesar de que cada protocolo facilita la comunicación básica, cada uno tiene un propósito diferente y realiza distintas tareas. Cada protocolo tiene sus propias ventajas y sus limitaciones.
Algunos protocolos sólo trabajan en ciertos niveles OSI. El nivel al que trabaja un protocolo describe su función. Por ejemplo, un protocolo que trabaje a nivel físico asegura que los paquetes de datos pasen a la tarjeta de red (NIC) y salgan al cable de la red.
Los protocolos también puede trabajar juntos en una jerarquía o conjunto de protocolos. Al igual que una red incorpora funciones a cada uno de los niveles del modelo OSI, distintos protocolos también trabajan juntos a distintos niveles en la jerarquía de protocolos. Los niveles de la jerarquía de protocolos se corresponden con los niveles del modelo OSI. Por ejemplo, el nivel de aplicación del protocolo TCP/IP se corresponde con el nivel de presentación del modelo OSI. Vistos conjuntamente, los protocolos describen la jerarquía de funciones y prestaciones.
Cómo funcionan los protocolos
La operación técnica en la que los datos son transmitidos a través de la red se puede dividir en dos pasos discretos, sistemáticos. A cada paso se realizan ciertas acciones que no se pueden realizar en otro paso. Cada paso incluye sus propias reglas y procedimientos, o protocolo.
Los pasos del protocolo se tienen que llevar a cabo en un orden apropiado y que sea el mismo en cada uno de los equipos de la red. En el equipo origen, estos pasos se tienen que llevar a cabo de arriba hacia abajo. En el equipo de destino, estos pasos se tienen que llevar a cabo de abajo hacia arriba.
El equipo origen
Los protocolos en el equipo origen:
Se dividen en secciones más pequeñas, denominadas paquetes.
Se añade a los paquetes información sobre la dirección, de forma que el equipo de destino pueda determinar si los datos le pertenecen.
Prepara los datos para transmitirlos a través de la NIC y enviarlos a través del cable de la red.
El equipo de destino
Los protocolos en el equipo de destino constan de la misma serie de pasos, pero en sentido inverso.
Toma los paquetes de datos del cable y los introduce en el equipo a través de la NIC.
Extrae de los paquetes de datos toda la información transmitida eliminando la información añadida por el equipo origen.
Copia los datos de los paquetes en un búfer para reorganizarlos enviarlos a la aplicación.
Los equipos origen y destino necesitan realizar cada paso de la misma forma para que los datos tengan la misma estructura al recibirse que cuando se enviaron.
Protocolos encaminables
Hasta mediados de los ochenta, la mayoría de las redes de área local (LAN) estaban aisladas. Una LAN servía a un departamento o a una compañía y rara vez se conectaba a entornos más grandes. Sin embargo, a medida que maduraba la tecnología LAN, y la comunicación de los datos necesitaba la expansión de los negocios, las LAN evolucionaron, haciéndose componentes de redes de comunicaciones más grandes en las que las LAN podían hablar entre sí.
Los datos se envían de una LAN a otra a lo largo de varios caminos disponibles, es decir, se encaminan. A los protocolos que permiten la comunicación LAN a LAN se les conoce como protocolos encaminables. Debido a que los protocolos encaminables se pueden utilizar para unir varias LAN y crear entornos de red de área extensa, han tomado gran importancia.
Protocolos en una arquitectura multinivel
En una red, tienen que trabajar juntos varios protocolos. Al trabajar juntos, aseguran que los datos se preparan correctamente, se transfieran al destino correspondiente y se reciban de forma apropiada.
El trabajo de los distintos protocolos tiene que estar coordinado de forma que no se produzcan conflictos o se realicen tareas incompletas. Los resultados de esta coordinación se conocen como trabajo en niveles.
Jerarquías de protocolos
Una jerarquía de protocolos es una combinación de protocolos. Cada nivel de la jerarquía especifica un protocolo diferente para la gestión de una función o de un subsistema del proceso de comunicación. Cada nivel tiene su propio conjunto de reglas. Los protocolos definen las reglas para cada nivel en el modelo OSI
Los niveles inferiores en el modelo OSI especifican cómo pueden conectar los fabricantes sus productos a los productos de otros fabricantes, por ejemplo, utilizando NIC de varios fabricantes en la misma LAN. Cuando utilicen los mismos protocolos, pueden enviar y recibir datos entre sí. Los niveles superiores especifican las reglas para dirigir las sesiones de comunicación (el tiempo en el que dos equipos mantienen una conexión) y la interpretación de aplicaciones. A medida que aumenta el nivel de la jerarquía, aumenta la sofisticación de las tareas asociadas a los protocolos.

El proceso de ligadura
El proceso de ligadura (binding process), el proceso con el que se conectan los protocolos entre sí y con la NIC, permite una gran flexibilidad a la hora de configurar una red. Se pueden mezclar y combinar los protocolos y las NIC según las necesidades. Por ejemplo, se pueden ligar dos jerarquías de protocolos a una NIC, como Intercambio de paquetes entre redes e Intercambio de paquetes en secuencia (IPX/SPX). Si hay más de una NIC en el equipo, cada jerarquía de protocolos puede estar en una NIC o en ambas.
El orden de ligadura determina la secuencia en la que el sistema operativo ejecuta el protocolo. Cuando se ligan varios protocolos a una NIC, el orden de ligadura es la secuencia en que se utilizarán los protocolos para intentar una comunicación correcta. Normalmente, el proceso de ligadura se inicia cuando se instala o se inicia el sistema operativo o el protocolo. Por ejemplo, si el primer protocolo ligado es TCP/IP, el sistema operativo de red intentará la conexión con TCP/IP antes de utilizar otro protocolo. Si falla esta conexión, el equipo tratará de realizar una conexión utilizando el siguiente protocolo en el orden de ligadura.
El proceso de ligadura consiste en asociar más de una jerarquía de protocolos a la NIC. Las jerarquías de protocolos tienen que estar ligadas o asociadas con los componentes en un orden para que los datos puedan moverse adecuadamente por la jerarquía durante la ejecución. Por ejemplo, se puede ligar TCP/IP al nivel de sesión del Sistema básico de entrada/salida en red (NetBIOS), así como al controlador de la NIC. El controlador de la NIC también está ligado a la NIC.
Jerarquías estándar
La industria informática ha diseñado varios tipos de protocolos como modelos estándar de protocolo. Los fabricantes de hardware y software pueden desarrollar sus productos para ajustarse a cada una de las combinaciones de estos protocolos. Los modelos más importantes incluyen:
La familia de protocolos ISO/OSI.
La arquitectura de sistemas en red de IBM (SNA).
Digital DECnet.
Novell NetWare.
Apple Talk de Apple.
El conjunto de protocolos de Internet, TCP/IP.
Los protocolos existen en cada nivel de estas jerarquías, realizando las tareas especificadas por el nivel. Sin embargo, las tareas de comunicación que tienen que realizar las redes se agrupan en un tipo de protocolo entre tres. Cada tipo está compuesto por uno o más niveles del modelo OSI.
Antes del modelo de referencia OSI se escribieron muchos protocolos. Por tanto, no es extraño encontrar jerarquías de protocolos que no se correspondan directamente con el modelo OSI.
Protocolos de aplicación
Los protocolos de aplicación trabajan en el nivel superior del modelo de referencia OSI y proporcionan interacción entre aplicaciones e intercambio de datos.
APPC (Comunicación avanzada entre programas): Protocolo SNA Trabajo en Grupo de IBM, mayormente utilizado en equipos AS/400. APPC se define como un protocolo de aplicación porque trabaja en el nivel de presentación del modelo OSI. Sin embargo, también se considera un protocolo de transporte porque APPC utiliza el protocolo LU 6.2 que trabaja en los niveles de transporte y de sesión del modelo OSI.
FTAM (Acceso y gestión de la transferencia de archivos): Un protocolo OSI de acceso a archivos
X.400: Un protocolo CCITT para las transmisiones internacionales de correo electrónico.
X.500: Un protocolo CCITT para servicios de archivos y directorio entre sistemas.
SMTP (Protocolo básico para la transferencia de correo): Un protocolo Internet para las transferencias de correo electrónico.
FTP (Protocolo de transferencia de archivos): Un protocolo para la transferencia de archivos en Internet.
SNMP (Protocolo básico de gestión de red): Un protocolo Internet para el control de redes y componentes.
Telnet: Un protocolo Internet para la conexión a máquinas remotas y procesar los datos localmente.
SMBs (Bloques de mensajes del servidor) de Microsoft y clientes o redirectores: Un protocolo cliente/servidor de respuesta a peticiones.
NCP (Protocolo básico de NetWare) y clientes o redirectores: Un conjunto de protocolos de servicio.
AppleTalk y AppleShare: Conjunto de protocolos de red de Apple.
AFP (Protocolo de archivos AppleTalk): Protocolo de Apple para el acceso a archivos remotos.
DAP (Protocolo de acceso a datos): Un protocolo de DECnet para el acceso a archivos.
Protocolos de transporte
Los protocolos de transporte facilitan las sesiones de comunicación entre equipos y aseguran que los datos se pueden mover con seguridad entre equipos.
TCP: El protocolo de TCP/IP para la entrega garantizada de datos en forma de paquetes secuenciados.
SPX: Parte del conjunto de protocolos IPX/SPX de Novell para datos en forma de paquetes secuenciados.
NWLink: La implementación de Microsoft del protocolo IPX/SPX.
NetBEUI (Interfaz de usuario ampliada NetBIOS): Establece sesiones de comunicación entre equipos (NetBIOS) y proporciona los servicios de transporte de datos subyacentes (NetBEUI).
ATP (Protocolo de transacciones Apple Talk) y NBP (Protocolo de asignación de nombres):
Protocolos de Apple de sesión de comunicación y de transporte de datos.
Protocolos de red
Los protocolos de red proporcionan lo que se denominan «servicios de enlace». Estos protocolos gestionan información sobre direccionamiento y encaminamiento, comprobación de errores y peticiones de retransmisión. Los protocolos de red también definen reglas para la comunicación en un entorno de red particular como es Ethernet o Token Ring.
IP: El protocolo de TCP/IP para el encaminamiento de paquetes.
IPX: El protocolo de Novell para el encaminamiento de paquetes.
NWLink: La implementación de Microsoft del protocolo IPX/SPX.
NetBEUI: Un protocolo de transporte que proporciona servicios de transporte de datos para sesiones y aplicaciones NetBIOS.
DDP (Protocolo de entrega de datagramas): Un protocolo de Apple Talk para el transporte de datos.
Las diferencias que hubieron de material fueron un poco grandes como:
cable UTP 500 mts usamos 300 mts
cable electrico c-12 2 rollos usamos 1 1/2 rollos.


CONCLUSIONES:al realizar esta practica nso dimos cuenta de que una buena presentacion equivale a un exelente trabajo,alparecer si nos faltaron algunas cosas pero le echamos muchas ganas para porder hacer el prototipo coon las especificaciones del lugar, claro aprendimos a como se debe de organizar una construccion